Advertisement
Review Article| Volume 28, ISSUE 1, P77-98, March 2023

Download started.

Ok

Biomechanical Sequelae of Syndesmosis Injury and Repair

  • Jennifer A. Nichols
    Correspondence
    Corresponding author. P.O. Box 116131, Gainesville, FL 32611.
    Affiliations
    J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Gainesville, FL 32611, USA

    Department of Orthopaedic Surgery & Sports Medicine, University of Florida, 3450 Hull Road, Gainesville, FL, 32607, USA
    Search for articles by this author
  • Chloe Baratta
    Affiliations
    J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Gainesville, FL 32611, USA
    Search for articles by this author
  • Christopher W. Reb
    Affiliations
    Orthopaedics, Veterans Health Administration North Florida / South Georgia Health System, Malcolm Randall VA Medical Center, 1601 SW Archer Road, Gainesville, FL, 32608, USA
    Search for articles by this author
Published:January 02, 2023DOI:https://doi.org/10.1016/j.fcl.2022.10.004

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Foot and Ankle Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Barnett C.H.
        • Napier J.R.
        The form and mobility of the fibula in metatherian mammals.
        J Anat. 1953; 87: 207-213
        • Heifner J.J.
        • Kilgore J.E.
        • Nichols J.A.
        • et al.
        Syndesmosis Injury Contributes a Large Negative Effect on Clinical Outcomes: A Systematic Review.
        Foot Ankle Spec. 2022; (19386400211067864)https://doi.org/10.1177/19386400211067865
        • Hermans J.J.
        • Beumer A.
        • de Jong T.A.W.
        • et al.
        Anatomy of the distal tibiofibular syndesmosis in adults: a pictorial essay with a multimodality approach.
        J Anat. 2010; 217: 633-645https://doi.org/10.1111/j.1469-7580.2010.01302.x
        • Zalavras C.
        • Thordarson D.
        Ankle syndesmotic injury.
        J Am Acad Orthop Surg. 2007; 15: 330-339https://doi.org/10.5435/00124635-200706000-00002
        • Boszczyk A.
        • Kwapisz S.
        • Krümmel M.
        • et al.
        Correlation of Incisura Anatomy With Syndesmotic Malreduction.
        Foot Ankle Int. 2018; 39: 369-375https://doi.org/10.1177/1071100717744332
        • Croft S.
        • Furey A.
        • Stone C.
        • et al.
        Radiographic evaluation of the ankle syndesmosis.
        Can J Surg. 2015; 58: 58-62https://doi.org/10.1503/cjs.004214
        • Souleiman F.
        • Heilemann M.
        • Hennings R.
        • et al.
        A standardized approach for exact CT-based three-dimensional position analysis in the distal tibiofibular joint.
        BMC Med Imaging. 2021; 21: 41https://doi.org/10.1186/s12880-021-00570-y
        • Kubik J.F.
        • Rollick N.C.
        • Bear J.
        • et al.
        Assessment of malreduction standards for the syndesmosis in bilateral CT scans of uninjured ankles.
        Bone Joint J. 2021; 103-B: 178-183https://doi.org/10.1302/0301-620X.103B1.BJJ-2020-0844.R1
        • Tümer N.
        • Arbabi V.
        • Gielis W.P.
        • et al.
        Three-dimensional analysis of shape variations and symmetry of the fibula, tibia, calcaneus and talus.
        J Anat. 2019; 234: 132-144https://doi.org/10.1111/joa.12900
        • Weinert C.R.
        • McMaster J.H.
        • Ferguson R.J.
        Dynamic function of the human fibula.
        Am J Anat. 1973; 138: 145-149https://doi.org/10.1002/aja.1001380202
        • ASHHURST A.P.C.
        • BROMER R.S.
        Classification and mechanism of fractures of the leg bones involving the ankle: based on a study of three hundred cases from the episcopal hospital.
        Arch Surg. 1922; 4: 51-129https://doi.org/10.1001/archsurg.1922.01110100060003
        • Barnett C.H.
        • Napier J.R.
        The axis of rotation at the ankle joint in man; its influence upon the form of the talus and the mobility of the fibula.
        J Anat. 1952; 86: 1-9
        • Bolin H.
        The fibula and its relationship the tibia and talus in injuries of the ankle due to forced external rotation.
        Acta Radiol. 1961; 56: 439-448https://doi.org/10.3109/00016926109172839
        • Lundberg A.
        Kinematics of the ankle and foot. In vivo roentgen stereophotogrammetry.
        Acta Orthop Scand Suppl. 1989; 233: 1-24https://doi.org/10.1186/1757-1146-5-s1-k5
        • Svensson O.K.
        • Lundberg A.
        • Walheirn G.
        • et al.
        In vivo fibular motions during various movements of the ankle.
        Clin Biomech (Bristol, Avon). 1989; 4: 155-160https://doi.org/10.1016/0268-0033(89)90019-3
        • Close J.R.
        Some applications of the functional anatomy of the ankle joint.
        J Bone Joint Surg Am. 1956; 38-A: 761-781
        • Leardini A.
        • O’Connor J.J.
        • Catani F.
        • et al.
        Kinematics of the human ankle complex in passive flexion; a single degree of freedom system.
        J Biomech. 1999; 32: 111-118https://doi.org/10.1016/s0021-9290(98)00157-2
        • Soavi R.
        • Girolami M.
        • Loreti I.
        • et al.
        The mobility of the proximal tibio-fibular joint. A Roentgen Stereophotogrammetric Analysis on six cadaver specimens.
        Foot Ankle Int. 2000; 21: 336-342https://doi.org/10.1177/107110070002100411
        • Bozkurt M.
        • Tonuk E.
        • Elhan A.
        • et al.
        Axial rotation and mediolateral translation of the fibula during passive plantarflexion.
        Foot Ankle Int. 2008; 29: 502-507https://doi.org/10.3113/FAI-2008-0502
        • Hu W.K.
        • Chen D.W.
        • Li B.
        • et al.
        Motion of the distal tibiofibular syndesmosis under different loading patterns: A biomechanical study.
        J Orthop Surg (Hong Kong). 2019; 27 (2309499019842879)https://doi.org/10.1177/2309499019842879
        • Kärrholm J.
        • Hansson L.I.
        • Selvik G.
        Mobility of the lateral malleolus. A roentgen stereophotogrammetric analysis.
        Acta Orthop Scand. 1985; 56: 479-483https://doi.org/10.3109/17453678508993039
        • Ahl T.
        • Dalén N.
        • Lundberg A.
        • et al.
        Mobility of the ankle mortise. A roentgen stereophotogrammetric analysis.
        Acta Orthop Scand. 1987; 58: 401-402https://doi.org/10.3109/17453678709146365
        • Beumer A.
        • Valstar E.R.
        • Garling E.H.
        • et al.
        Kinematics of the distal tibiofibular syndesmosis: radiostereometry in 11 normal ankles.
        Acta Orthop Scand. 2003; 74: 337-343https://doi.org/10.1080/00016470310014283
        • Arndt A.
        • Wolf P.
        • Liu A.
        • et al.
        Intrinsic foot kinematics measured in vivo during the stance phase of slow running.
        J Biomech. 2007; 40: 2672-2678https://doi.org/10.1016/j.jbiomech.2006.12.009
        • Lundgren P.
        • Nester C.
        • Liu A.
        • et al.
        Invasive in vivo measurement of rear-, mid- and forefoot motion during walking.
        Gait Posture. 2008; 28: 93-100https://doi.org/10.1016/j.gaitpost.2007.10.009
        • Lepojärvi S.
        • Niinimäki J.
        • Pakarinen H.
        • et al.
        Rotational Dynamics of the Normal Distal Tibiofibular Joint With Weight-Bearing Computed Tomography.
        Foot Ankle Int. 2016; 37: 627-635https://doi.org/10.1177/1071100716634757
        • Hoogervorst P.
        • Working Z.M.
        • El Naga A.N.
        • et al.
        In Vivo CT Analysis of Physiological Fibular Motion at the Level of the Ankle Syndesmosis During Plantigrade Weightbearing.
        Foot Ankle Spec. 2019; 12: 233-237https://doi.org/10.1177/1938640018782602
        • Malhotra K.
        • Welck M.
        • Cullen N.
        • et al.
        The effects of weight bearing on the distal tibiofibular syndesmosis: A study comparing weight bearing-CT with conventional CT.
        Foot Ankle Surg. 2019; 25: 511-516https://doi.org/10.1016/j.fas.2018.03.006
        • Jend H.H.
        • Ney R.
        • Heller M.
        Evaluation of tibiofibular motion under load conditions by computed tomography.
        J Orthop Res. 1985; 3: 418-423https://doi.org/10.1002/jor.1100030404
        • Mousavian A.
        • Shakoor D.
        • Hafezi-Nejad N.
        • et al.
        Tibiofibular syndesmosis in asymptomatic ankles: initial kinematic analysis using four-dimensional CT.
        Clin Radiol. 2019; 74 (e8): 571.e1-571.e8https://doi.org/10.1016/j.crad.2019.03.015
        • Wong M.T.
        • Wiens C.
        • Lamothe J.
        • et al.
        Four-Dimensional CT Analysis of Normal Syndesmotic Motion.
        Foot Ankle Int. 2021; 42: 1491-1501https://doi.org/10.1177/10711007211015204
        • Wang C.
        • Yang J.
        • Wang S.
        • et al.
        Three-dimensional motions of distal syndesmosis during walking.
        J Orthop Surg Res. 2015; 10: 166https://doi.org/10.1186/s13018-015-0306-5
        • Pitcairn S.
        • Kromka J.
        • Hogan M.
        • et al.
        Validation and application of dynamic biplane radiography to study in vivo ankle joint kinematics during high-demand activities.
        J Biomech. 2020; 103: 109696https://doi.org/10.1016/j.jbiomech.2020.109696
        • Hogg-Cornejo V.
        • Hunt K.J.
        • Bartolomei J.
        • et al.
        Normal Kinematics of the Syndesmosis and Ankle Mortise During Dynamic Movements.
        Foot Ankle Orthop. 2020; 5 (2473011420933007)https://doi.org/10.1177/2473011420933007
        • Alves-da-Silva T.
        • Guerra-Pinto F.
        • Matias R.
        • et al.
        Kinematics of the proximal tibiofibular joint is influenced by ligament integrity, knee and ankle mobility: an exploratory cadaver study.
        Knee Surg Sports Traumatol Arthrosc. 2019; 27: 405-411https://doi.org/10.1007/s00167-018-5070-8
        • Okazaki M.
        • Kaneko M.
        • Ishida Y.
        • et al.
        Gender difference in distance of tibiofibular syndesmosis to joint dynamics of lower extremities during squat.
        J Physiol Sci. 2015; 65: 165-170https://doi.org/10.1007/s12576-015-0355-x
        • Lenz A.L.
        • Strobel M.A.
        • Anderson A.M.
        • et al.
        Assignment of local coordinate systems and methods to calculate tibiotalar and subtalar kinematics: A systematic review.
        J Biomech. 2021; 120: 110344https://doi.org/10.1016/j.jbiomech.2021.110344
        • Okazaki M.
        • Kaneko M.
        • Ishida Y.
        • et al.
        Changes in the Width of the Tibiofibular Syndesmosis Related to Lower Extremity Joint Dynamics and Neuromuscular Coordination on Drop Landing During the Menstrual Cycle.
        Orthop J Sports Med. 2017; 5 (2325967117724753)https://doi.org/10.1177/2325967117724753
        • Lambert K.L.
        The weight-bearing function of the fibula. A strain gauge study.
        J Bone Joint Surg Am. 1971; 53: 507-513
        • Goh J.C.
        • Mech A.M.
        • Lee E.H.
        • et al.
        Biomechanical study on the load-bearing characteristics of the fibula and the effects of fibular resection.
        Clin Orthop Relat Res. 1992; 279: 223-228
        • Funk J.R.
        • Rudd R.W.
        • Kerrigan J.R.
        • et al.
        The effect of tibial curvature and fibular loading on the tibia index.
        Traffic Inj Prev. 2004; 5: 164-172https://doi.org/10.1080/15389580490436069
        • Wang Q.
        • Whittle M.
        • Cunningham J.
        • et al.
        Fibula and its ligaments in load transmission and ankle joint stability.
        Clin Orthop Relat Res. 1996; 330: 261-270https://doi.org/10.1097/00003086-199609000-00034
        • Takebe K.
        • Nakagawa A.
        • Minami H.
        • et al.
        Role of the fibula in weight-bearing.
        Clin Orthop Relat Res. 1984; 184: 289-292
        • Segal D.
        • Pick R.Y.
        • Klein H.A.
        • et al.
        The role of the lateral malleolus as a stabilizing factor of the ankle joint: preliminary report.
        Foot Ankle. 1981; 2: 25-29https://doi.org/10.1177/107110078100200104
        • Leardini A.
        • O’Connor J.J.
        • Catani F.
        • et al.
        The role of the passive structures in the mobility and stability of the human ankle joint: a literature review.
        Foot Ankle Int. 2000; 21: 602-615https://doi.org/10.1177/107110070002100715
        • Brockett C.L.
        • Chapman G.J.
        Biomechanics of the ankle.
        Orthop Trauma. 2016; 30: 232-238https://doi.org/10.1016/j.mporth.2016.04.015
        • Calhoun J.H.
        • Li F.
        • Ledbetter B.R.
        • et al.
        A comprehensive study of pressure distribution in the ankle joint with inversion and eversion.
        Foot Ankle Int. 1994; 15: 125-133https://doi.org/10.1177/107110079401500307
        • Kura H.
        • Kitaoka H.B.
        • Luo Z.P.
        • et al.
        Measurement of surface contact area of the ankle joint.
        Clin Biomech (Bristol, Avon). 1998; 13: 365-370https://doi.org/10.1016/s0268-0033(98)00011-4
        • Michelson J.D.
        • Checcone M.
        • Kuhn T.
        • et al.
        Intra-articular load distribution in the human ankle joint during motion.
        Foot Ankle Int. 2001; 22: 226-233https://doi.org/10.1177/107110070102200310
        • Millington S.
        • Grabner M.
        • Wozelka R.
        • et al.
        A stereophotographic study of ankle joint contact area.
        J Orthop Res. 2007; 25: 1465-1473https://doi.org/10.1002/jor.20425
        • Khambete P.
        • Harlow E.
        • Ina J.
        • et al.
        Biomechanics of the Distal Tibiofibular Syndesmosis: A Systematic Review of Cadaveric Studies.
        Foot Ankle Orthop. 2021; 6 (24730114211012700)https://doi.org/10.1177/24730114211012701
        • Spennacchio P.
        • Seil R.
        • Gathen M.
        • et al.
        Diagnosing instability of ligamentous syndesmotic injuries: A biomechanical perspective.
        Clin Biomech (Bristol, Avon). 2021; 84: 105312https://doi.org/10.1016/j.clinbiomech.2021.105312
        • Clanton T.O.
        • Williams B.T.
        • Backus J.D.
        • et al.
        Biomechanical Analysis of the Individual Ligament Contributions to Syndesmotic Stability.
        Foot Ankle Int. 2017; 38: 66-75https://doi.org/10.1177/1071100716666277
        • Ramsey P.L.
        • Hamilton W.
        Changes in tibiotalar area of contact caused by lateral talar shift.
        J Bone Joint Surg Am. 1976; 58: 356-357
        • Kimizuka M.
        • Kurosawa H.
        • Fukubayashi T.
        Load-bearing pattern of the ankle joint. Contact area and pressure distribution.
        Arch Orthop Trauma Surg (1978). 1980; 96: 45-49https://doi.org/10.1007/BF01246141
        • Moody M.L.
        • Koeneman J.
        • Hettinger E.
        • et al.
        The effects of fibular and talar displacement on joint contact areas about the ankle.
        Orthop Rev. 1992; 21: 741-744
        • Thordarson D.B.
        • Motamed S.
        • Hedman T.
        • et al.
        The effect of fibular malreduction on contact pressures in an ankle fracture malunion model.
        J Bone Joint Surg Am. 1997; 79: 1809-1815https://doi.org/10.2106/00004623-199712000-00006
        • Lloyd J.
        • Elsayed S.
        • Hariharan K.
        • et al.
        Revisiting the concept of talar shift in ankle fractures.
        Foot Ankle Int. 2006; 27: 793-796https://doi.org/10.1177/107110070602701006
        • Burns W.C.
        • Prakash K.
        • Adelaar R.
        • et al.
        Tibiotalar joint dynamics: indications for the syndesmotic screw--a cadaver study.
        Foot Ankle. 1993; 14: 153-158https://doi.org/10.1177/107110079301400308
        • Hunt K.J.
        • Goeb Y.
        • Behn A.W.
        • et al.
        Ankle Joint Contact Loads and Displacement With Progressive Syndesmotic Injury.
        Foot Ankle Int. 2015; 36: 1095-1103https://doi.org/10.1177/1071100715583456
        • Curtis M.J.
        • Michelson J.D.
        • Urquhart M.W.
        • et al.
        Tibiotalar contact and fibular malunion in ankle fractures. A cadaver study.
        Acta Orthop Scand. 1992; 63: 326-329https://doi.org/10.3109/17453679209154793
        • Harris J.
        • Fallat L.
        Effects of isolated Weber B fibular fractures on the tibiotalar contact area.
        J Foot Ankle Surg. 2004; 43: 3-9https://doi.org/10.1053/j.jfas.2003.11.008
        • Stroh D.A.
        • DeFontes K.
        • Paez A.
        • et al.
        Distal fibular malrotation and lateral ankle contact characteristics.
        Foot Ankle Surg. 2019; 25: 90-93https://doi.org/10.1016/j.fas.2017.09.001
        • Deml C.
        • Eichinger M.
        • van Leeuwen W.F.
        • et al.
        Does intra-articular load distribution change after lateral malleolar fractures? An in vivo study comparing operative and nonoperative treatment.
        Injury. 2017; 48: 854-860https://doi.org/10.1016/j.injury.2017.02.035
        • Williams G.N.
        • Allen E.J.
        Rehabilitation of syndesmotic (high) ankle sprains.
        Sports Health. 2010; 2: 460-470https://doi.org/10.1177/1941738110384573
        • Lamer S.
        • Hébert-Davies J.
        • Dubé V.
        • et al.
        Effect of a Controlled Ankle Motion Walking Boot on Syndesmotic Instability During Weightbearing: A Cadaveric Study.
        Orthop J Sports Med. 2019; 7 (2325967119864018)https://doi.org/10.1177/2325967119864018
        • Lamer S.
        • Hébert-Davies J.
        • Dubé V.
        • et al.
        The Effect of “High-ankle Sprain” Taping on Ankle Syndesmosis Congruity: A Cadaveric Study.
        Open Sports Sci J. 2020; 13https://doi.org/10.2174/1875399X02013010123
        • Beumer A.
        • Valstar E.R.
        • Garling E.H.
        • et al.
        Kinematics before and after reconstruction of the anterior syndesmosis of the ankle: A prospective radiostereometric and clinical study in 5 patients.
        Acta Orthop. 2005; 76: 713-720https://doi.org/10.1080/17453670510041817
        • Klitzman R.
        • Zhao H.
        • Zhang L.Q.
        • et al.
        Suture-button versus screw fixation of the syndesmosis: a biomechanical analysis.
        Foot Ankle Int. 2010; 31: 69-75https://doi.org/10.3113/FAI.2010.0069
        • Jamieson M.D.
        • Stake I.K.
        • Brady A.W.
        • et al.
        Anterior Inferior Tibiofibular Ligament Suture Tape Augmentation for Isolated Syndesmotic Injuries.
        Foot Ankle Int. 2022; (10711007221082932)https://doi.org/10.1177/10711007221082933
        • Patel N.K.
        • Chan C.
        • Murphy C.I.
        • et al.
        Hybrid Fixation Restores Tibiofibular Kinematics for Early Weightbearing After Syndesmotic Injury.
        Orthop J Sports Med. 2020; 8 (2325967120946744)https://doi.org/10.1177/2325967120946744
        • Patel N.K.
        • Murphy C.I.
        • Pfeiffer T.R.
        • et al.
        Sagittal instability with inversion is important to evaluate after syndesmosis injury and repair: a cadaveric robotic study.
        J Exp Orthop. 2020; 7: 18https://doi.org/10.1186/s40634-020-00234-w
        • LaMothe J.M.
        • Baxter J.R.
        • Murphy C.
        • et al.
        Three-Dimensional Analysis of Fibular Motion After Fixation of Syndesmotic Injuries With a Screw or Suture-Button Construct.
        Foot Ankle Int. 2016; 37: 1350-1356https://doi.org/10.1177/1071100716666865
        • Bragonzoni L.
        • Russo A.
        • Girolami M.
        • et al.
        The distal tibiofibular syndesmosis during passive foot flexion. RSA-based study on intact, ligament injured and screw fixed cadaver specimens.
        Arch Orthop Trauma Surg. 2006; 126: 304-308https://doi.org/10.1007/s00402-006-0131-8
        • Che J.
        • Li C.
        • Gao Z.
        • et al.
        Novel anatomical reconstruction of distal tibiofibular ligaments restores syndesmotic biomechanics.
        Knee Surg Sports Traumatol Arthrosc. 2017; 25: 1866-1872https://doi.org/10.1007/s00167-017-4485-y
        • Wu R.
        • Wu H.
        • Arola D.
        • et al.
        Real-time three-dimensional digital image correlation for biomedical applications.
        J Biomed Opt. 2016; 21: 107003https://doi.org/10.1117/1.JBO.21.10.107003
        • Pang E.Q.
        • Bedigrew K.
        • Palanca A.
        • et al.
        Ankle joint contact loads and displacement in syndesmosis injuries repaired with Tightropes compared with screw fixation in a static model.
        Injury. 2019; 50: 1901-1907https://doi.org/10.1016/j.injury.2019.09.012
        • Soin S.P.
        • Knight T.A.
        • Dinah A.F.
        • et al.
        Suture-button versus screw fixation in a syndesmosis rupture model: a biomechanical comparison.
        Foot Ankle Int. 2009; 30: 346-352https://doi.org/10.3113/FAI.2009.0346
        • Seyhan M.
        • Donmez F.
        • Mahirogullari M.
        • et al.
        Comparison of screw fixation with elastic fixation methods in the treatment of syndesmosis injuries in ankle fractures.
        Injury. 2015; 46: S19-S23https://doi.org/10.1016/j.injury.2015.05.027
        • Nelson O.A.
        Examination and repair of the AITFL in transmalleolar fractures.
        J Orthop Trauma. 2006; 20: 637-643https://doi.org/10.1097/01.bot.0000211145.08543.4a
        • Shoji H.
        • Teramoto A.
        • Sakakibara Y.
        • et al.
        Kinematics and Laxity of the Ankle Joint in Anatomic and Nonanatomic Anterior Talofibular Ligament Repair: A Biomechanical Cadaveric Study.
        Am J Sports Med. 2019; 47: 667-673https://doi.org/10.1177/0363546518820527
        • Wood A.R.
        • Arshad S.A.
        • Kim H.
        • et al.
        Kinematic Analysis of Combined Suture-Button and Suture Anchor Augment Constructs for Ankle Syndesmosis Injuries.
        Foot Ankle Int. 2020; 41: 463-472https://doi.org/10.1177/1071100719898181
        • Kelly M.
        • Vasconcellos D.
        • Osman W.S.
        • et al.
        Alterations in tibiotalar joint reaction force following syndesmotic injury are restored with static syndesmotic fixation.
        Clin Biomech (Bristol, Avon). 2019; 69: 156-163https://doi.org/10.1016/j.clinbiomech.2019.07.013
        • Goetz J.E.
        • Rungprai C.
        • Rudert M.J.
        • et al.
        Screw fixation of the syndesmosis alters joint contact characteristics in an axially loaded cadaveric model.
        Foot Ankle Surg. 2019; 25: 594-600https://doi.org/10.1016/j.fas.2018.05.003
        • Gräff P.
        • Alanazi S.
        • Alazzawi S.
        • et al.
        Screw fixation for syndesmotic injury is stronger and provides more contact area of the joint surface than TightRope®: A biomechanical study.
        Technol Health Care. 2020; 28: 533-539https://doi.org/10.3233/THC-191638
        • Markolf K.L.
        • Jackson S.R.
        • McAllister D.R.
        Syndesmosis fixation using dual 3.5 mm and 4.5 mm screws with tricortical and quadricortical purchase: a biomechanical study.
        Foot Ankle Int. 2013; 34: 734-739https://doi.org/10.1177/1071100713478923
        • Hansen M.
        • Le L.
        • Wertheimer S.
        • et al.
        Syndesmosis fixation: analysis of shear stress via axial load on 3.5-mm and 4.5-mm quadricortical syndesmotic screws.
        J Foot Ankle Surg. 2006; 45: 65-69https://doi.org/10.1053/j.jfas.2005.12.004
        • Pereira D.S.
        • Koval K.J.
        • Resnick R.B.
        • et al.
        Tibiotalar contact area and pressure distribution: the effect of mortise widening and syndesmosis fixation.
        Foot Ankle Int. 1996; 17: 269-274https://doi.org/10.1177/107110079601700506
        • Bai L.
        • Zhang W.
        • Guan S.
        • et al.
        Syndesmotic malreduction may decrease fixation stability: a biomechanical study.
        J Orthop Surg Res. 2020; 15: 64https://doi.org/10.1186/s13018-020-01584-y
        • Vasarhelyi A.
        • Lubitz J.
        • Zeh A.
        • et al.
        [Dynamic gait analysis of blocked distal tibiofibular joint following syndesmotic complex lesions].
        Z Orthop Unfall. 2009; 147: 439-444https://doi.org/10.1055/s-0029-1185695
        • Taskesen A.
        • Okkaoglu M.C.
        • Demirkale I.
        • et al.
        Dynamic and Stabilometric Analysis After Syndesmosis Injuries.
        J Am Podiatr Med Assoc. 2020; 110 (Article_9)https://doi.org/10.7547/18-174
        • Alastuey-López D.
        • Seral B.
        • Pérez M.Á.
        Biomechanical evaluation of syndesmotic fixation techniques via finite element analysis: Screw vs. suture button.
        Comput Methods Programs Biomed. 2021; 208: 106272https://doi.org/10.1016/j.cmpb.2021.106272
        • Hamid K.S.
        • Scott A.T.
        • Nwachukwu B.U.
        • et al.
        The Role of Fluid Dynamics in Distributing Ankle Stresses in Anatomic and Injured States.
        Foot Ankle Int. 2016; 37: 1343-1349https://doi.org/10.1177/1071100716660823
        • Li H.
        • Chen Y.
        • Qiang M.
        • et al.
        Computational biomechanical analysis of postoperative inferior tibiofibular syndesmosis: a modified modeling method.
        Comput Methods Biomech Biomed Engin. 2018; 21: 427-435https://doi.org/10.1080/10255842.2018.1472770
        • Liacouras P.C.
        • Wayne J.S.
        Computational modeling to predict mechanical function of joints: application to the lower leg with simulation of two cadaver studies.
        J Biomech Eng. 2007; 129: 811-817https://doi.org/10.1115/1.2800763
        • Liu Q.
        • Zhang K.
        • Zhuang Y.
        • et al.
        Analysis of the stress and displacement distribution of inferior tibiofibular syndesmosis injuries repaired with screw fixation: a finite element study.
        PLoS One. 2013; 8: e80236https://doi.org/10.1371/journal.pone.0080236
        • Liu Q.
        • Zhao G.
        • Yu B.
        • et al.
        Effects of inferior tibiofibular syndesmosis injury and screw stabilization on motion of the ankle: a finite element study.
        Knee Surg Sports Traumatol Arthrosc. 2016; 24: 1228-1235https://doi.org/10.1007/s00167-014-3320-y
        • Vance N.G.
        • Vance R.C.
        • Chandler W.T.
        • et al.
        Can Syndesmosis Screws Displace the Distal Fibula?.
        Foot Ankle Spec. 2021; 14: 201-205https://doi.org/10.1177/1938640020912092
        • Verim O.
        • Er M.S.
        • Altinel L.
        • et al.
        Biomechanical evaluation of syndesmotic screw position: a finite-element analysis.
        J Orthop Trauma. 2014; 28: 210-215https://doi.org/10.1097/BOT.0b013e3182a6df0a
        • Wei F.
        • Braman J.E.
        • Weaver B.T.
        • et al.
        Determination of dynamic ankle ligament strains from a computational model driven by motion analysis based kinematic data.
        J Biomech. 2011; 44: 2636-2641https://doi.org/10.1016/j.jbiomech.2011.08.010
        • Zhu Z.J.
        • Zhu Y.
        • Liu J.F.
        • et al.
        Posterolateral ankle ligament injuries affect ankle stability: a finite element study.
        BMC Musculoskelet Disord. 2016; 17: 96https://doi.org/10.1186/s12891-016-0954-6
        • Mercan N.
        • Yıldırım A.
        • Dere Y.
        Biomechanical Analysis of Tibiofibular Syndesmosis Injury Fixation Methods: A Finite Element Analysis.
        J Foot Ankle Surg. 2022; https://doi.org/10.1053/j.jfas.2022.05.007
        • Er M.S.
        • Verim O.
        • Altinel L.
        • et al.
        Three-dimensional finite element analysis used to compare six different methods of syndesmosis fixation with 3.5- or 4.5-mm titanium screws: a biomechanical study.
        J Am Podiatr Med Assoc. 2013; 103: 174-180https://doi.org/10.7547/1030174
        • Er M.S.
        • Verim O.
        • Eroglu M.
        • et al.
        Biomechanical evaluation of syndesmotic screw design via finite element analysis and Taguchi’s method.
        J Am Podiatr Med Assoc. 2015; 105: 14-21https://doi.org/10.7547/8750-7315-105.1.14
        • Hariri A.E.
        • Mirzabozorg H.
        • Esmaeili R.
        • et al.
        Predicting ankle joint syndesmotic screw lifetime using finite element and fatigue analysis.
        J Orthopaedics, Trauma Rehabil. 2022; 29 (221049172210772)https://doi.org/10.1177/22104917221077274
        • Scranton P.E.
        • McMaster J.G.
        • Kelly E.
        Dynamic fibular function: a new concept.
        Clin Orthop Relat Res. 1976; 118: 76-81