Advertisement
Review Article| Volume 28, ISSUE 1, P155-172, March 2023

Download started.

Ok

Disease-Specific Finite element Analysis of the Foot and Ankle

Published:January 02, 2023DOI:https://doi.org/10.1016/j.fcl.2022.10.007

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Foot and Ankle Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Morales-orcajo E.
        • Bayod J.
        • Estevam
        • et al.
        Computational Foot Modeling: Scope and Applications.
        Arch Comput Methods Eng. 2016; 23: 389-416
        • Behforootan S.
        • Chatzistergos P.
        • Naemi R.
        • et al.
        Finite-element modelling of the foot for clinical application: A systematic review.
        Med Eng Phys. 2017; 39: 1-11
        • Myerson M.S.
        • Thordarson D.B.
        • Johnson J.E.
        • et al.
        Classification and Nomenclature: Progressive Collapsing Foot Deformity.
        Foot Ankle Int. 2020; 41: 1271-1276
        • Iaquinto J.M.
        • Wayne J.S.
        Computational model of the lower leg and foot/ankle complex: application to arch stability.
        J Biomech Eng. 2010; 132: 021009
        • Spratley E.M.
        • Matheis E.A.
        • Hayes C.W.
        • et al.
        Effects of Degree of Surgical Correction for Flatfoot Deformity in Patient-Specific Computational Models.
        Ann Biomed Eng. 2015; 43: 1947-1956
        • Tao K.
        • Ji W.T.
        • Wang D.M.
        • et al.
        Relative contributions of plantar fascia and ligaments on the arch static stability: a finite-element study.
        Biomed Tech (Berl). 2010; 55: 265-271
        • Malakoutikhah H.
        • Madenci E.
        • Latt L.D.
        The contribution of the ligaments in progressive collapsing foot deformity: A comprehensive computational study.
        J Orthop Res. 2022; 40: 2209-2221
        • Wu J.
        • Liu H.
        • Xu C.
        Biomechanical Effects of Graft Shape for the Evans Lateral Column Lengthening Procedure: A Patient-Specific Finite-element Investigation.
        Foot Ankle Int. 2022; 43: 404-413
        • Cifuentes-De la Portilla C.
        • Larrainzar-Garijo R.
        • Bayod J.
        Analysis of the main passive soft tissues associated with adult acquired flatfoot deformity development: A computational modeling approach.
        J Biomech. 2019; 84: 183-190
        • Malakoutikhah H.
        • Madenci E.
        • Latt L.D.
        A computational model of force within the ligaments and tendons in progressive collapsing foot deformity.
        J Orthop Res. 2022; : 1-11
        • Cheung J.T.
        • Nigg B.M.
        Clinical Applications of Computational Simulation of Foot and Ankle.
        Sports Orthopaedics Traumatol. 2008; 23: 264-271
        • Wong D.W.
        • Wang Y.
        • Leung A.K.
        • et al.
        Finite-element simulation on posterior tibial tendinopathy: Load transfer alteration and implications to the onset of pes planus.
        Clin Biomech. 2018; 51: 10-16
        • Malakoutikhah H.
        • Madenci E.
        • Latt L.D.
        The impact of ligament tears on joint contact mechanics in progressive collapsing foot deformity: A finite-element study.
        Clin Biomech. 2022; 94: 105630
        • Iaquinto J.M.
        • Wayne J.S.
        Effects of surgical correction for the treatment of adult acquired flatfoot deformity: a computational investigation.
        J Orthop Res. 2011; 29: 1047-1054
        • Chitsazan A.
        • Herzog W.
        • Rouhi G.
        • et al.
        Alteration of Strain Distribution in Distal Tibia After Triple Arthrodesis: Experimental and Finite-element Investigations.
        J Med Biol Eng. 2018; 38: 469-481
        • Cifuentes-De la Portilla C.
        • Larrainzar-Garijo R.
        • Bayod J.
        Analysis of biomechanical stresses caused by hindfoot joint arthrodesis in the treatment of adult acquired flatfoot deformity: A finite-element study.
        Foot Ankle Surg. 2020; 26: 412-420
        • Xu C.
        • Li M.Q.
        • Wang C.
        • et al.
        Nonanatomic versus anatomic techniques in spring ligament reconstruction: biomechanical assessment via a finite-element model.
        J Orthop Surg Res. 2019; 14: 114
        • Xu C.
        • Zhang M.Y.
        • Lei G.H.
        • et al.
        Biomechanical evaluation of tenodesis reconstruction in ankle with deltoid ligament deficiency: a finite-element analysis.
        Knee Surg Sports Traumatol Arthrosc. 2012; 20: 1854-1862
        • Henry J.K.
        • Shakked R.
        • Ellis S.J.
        Adult-Acquired Flatfoot Deformity.
        Foot Ankle Orthop. 2019; 4 (2473011418820847)
        • Wong D.W.
        • Wang Y.
        • Niu W.
        • et al.
        Finite-element analysis of subtalar joint arthroereisis on adult-acquired flexible flatfoot deformity using customised sinus tarsi implant.
        J Orthop Translat. 2021; 27: 139-145
        • Morales-Orcajo E.
        • Bayod J.
        • Becerro-de-Bengoa-Vallejo R.
        • et al.
        Influence of first proximal phalanx geometry on hallux valgus deformity: a finite-element analysis.
        Med Biol Eng Comput. 2015; 53: 645-653
        • Matzaroglou C.
        • Bougas P.
        • Panagiotopoulos E.
        • et al.
        Ninety-degree chevron osteotomy for correction of hallux valgus deformity: clinical data and finite-element analysis.
        Open Orthop J. 2010; 4: 152-156
        • Geng X.
        • Shi J.
        • Chen W.
        • et al.
        Impact of first metatarsal shortening on forefoot loading pattern: a finite-element model study.
        BMC Musculoskelet Disord. 2019; 20: 625
        • Zhang Q.
        • Zhang Y.
        • Huang J.
        • et al.
        Effect of Displacement Degree of Distal Chevron Osteotomy on Metatarsal Stress: A Finite-element Method.
        Biology (Basel). 2022; 11
        • Wang Y.
        • Li Z.
        • Zhang M.
        Biomechanical study of tarsometatarsal joint fusion using finite-element analysis.
        Med Eng Phys. 2014; 36: 1394-1400
        • Zhang Y.
        • Awrejcewicz J.
        • Szymanowska O.
        • et al.
        Effects of severe hallux valgus on metatarsal stress and the metatarsophalangeal loading during balanced standing: A finite-element analysis.
        Comput Biol Med. 2018; 97: 1-7
        • Wong D.W.
        • Wang Y.
        • Chen T.L.
        • et al.
        Finite-element Analysis of Generalized Ligament Laxity on the Deterioration of Hallux Valgus Deformity (Bunion).
        Front Bioeng Biotechnol. 2020; 8: 571192
        • Yu G.
        • Fan Y.
        • Fan Y.
        • et al.
        The Role of Footwear in the Pathogenesis of Hallux Valgus: A Proof-of-Concept Finite-element Analysis in Recent Humans and Homo naledi.
        Front Bioeng Biotechnol. 2020; 8: 648
        • Yu J.
        • Cheung J.T.
        • Fan Y.
        • et al.
        Development of a finite-element model of female foot for high-heeled shoe design.
        Clin Biomech. 2008; 23: S31-S38
        • Wai-Chi Wong D.
        • Wang Y.
        • Zhang M.
        • et al.
        Functional restoration and risk of non-union of the first metatarsocuneiform arthrodesis for hallux valgus: A finite-element approach.
        J Biomech. 2015; 48: 3142-3148
        • Yu X.
        • Li W.L.
        • Pang Q.J.
        • et al.
        Finite-element analysis of locking plate and 1/4 tubular plate for first tarsometatarsal joint fracture-dislocation.
        J Int Med Res. 2017; 45: 1528-1534
        • Flavin R.
        • Halpin T.
        • O'Sullivan R.
        • et al.
        A finite-element analysis study of the metatarsophalangeal joint of the hallux rigidus.
        J Bone Joint Surg Br. 2008; 90: 1334-1340
        • Budhabhatti S.P.
        • Erdemir A.
        • Petre M.
        • et al.
        Finite-element modeling of the first ray of the foot: a tool for the design of interventions.
        J Biomech Eng. 2007; 129: 750-756
        • Martinez Bocanegra M.A.
        • Bayod Lopez J.
        • Vidal-Lesso A.
        • et al.
        Structural interaction between bone and implants due to arthroplasty of the first metatarsophalangeal joint.
        Foot Ankle Surg. 2019; 25: 150-157
        • Moayedi M.
        • Arshi A.R.
        • Salehi M.
        • et al.
        Associations between changes in loading pattern, deformity, and internal stresses at the foot with hammer toe during walking; a finite-element approach.
        Comput Biol Med. 2021; 135: 104598
        • Garcia-Gonzalez A.
        • Bayod J.
        • Prados-Frutos J.C.
        • et al.
        Finite-element simulation of flexor digitorum longus or flexor digitorum brevis tendon transfer for the treatment of claw toe deformity.
        J Biomech. 2009; 42: 1697-1704
        • Bayod J.
        • Becerro de Bengoa Vallejo R.
        • Losa Iglesias M.E.
        • et al.
        Stress at the second metatarsal bone after correction of hammertoe and claw toe deformity: a finite-element analysis using an anatomical model.
        J Am Podiatr Med Assoc. 2013; 103: 260-273
        • Bing F.
        • Wei C.
        • Liu P.
        • et al.
        Biomechanical finite-element analysis of typical tibiotalar arthrodesis.
        Med Novel Technology Devices. 2021; 11: 100087
        • Anderson R.T.
        • Pacaccio D.J.
        • Yakacki C.M.
        • et al.
        Finite-element analysis of a pseudoelastic compression-generating intramedullary ankle arthrodesis nail.
        J Mech Behav Biomed Mater. 2016; 62: 83-92
        • Alonso-Vazquez A.
        • Lauge-Pedersen H.
        • Lidgren L.
        • et al.
        Initial stability of ankle arthrodesis with three-screw fixation. A finite-element analysis.
        Clin Biomech. 2004; 19: 751-759
        • Wang S.
        • Yu J.
        • Ma X.
        • et al.
        Finite-element analysis of the initial stability of arthroscopic ankle arthrodesis with three-screw fixation: posteromedial versus posterolateral home-run screw.
        J Orthop Surg Res. 2020; 15: 252
        • Anderson D.D.
        • Goldsworthy J.K.
        • Shivanna K.
        • et al.
        Intra-articular contact stress distributions at the ankle throughout stance phase-patient-specific finite-element analysis as a metric of degeneration propensity.
        Biomech Model Mechanobiol. 2006; 5: 82-89
        • Wang Y.
        • Li Z.
        • Wong D.W.
        • et al.
        Effects of Ankle Arthrodesis on Biomechanical Performance of the Entire Foot.
        PLoS One. 2015; 10: e0134340
        • Vazquez A.A.
        • Lauge-Pedersen H.
        • Lidgren L.
        • et al.
        Finite-element analysis of the initial stability of ankle arthrodesis with internal fixation: flat cut versus intact joint contours.
        Clin Biomech. 2003; 18: 244-253
        • Wang Y.
        • Li Z.
        • Wong D.W.
        • et al.
        Finite-element analysis of biomechanical effects of total ankle arthroplasty on the foot.
        J Orthop Translat. 2018; 12: 55-65
        • Ozen M.
        • Sayman O.
        • Havitcioglu H.
        Modeling and stress analyses of a normal foot-ankle and a prosthetic foot-ankle complex.
        Acta Bioeng Biomech. 2013; 15: 19-27
        • Reggiani B.
        • Leardini A.
        • Corazza F.
        • et al.
        Finite-element analysis of a total ankle replacement during the stance phase of gait.
        J Biomech. 2006; 39: 1435-1443
        • Sopher R.S.
        • Amis A.A.
        • Calder J.D.
        • et al.
        Total ankle replacement design and positioning affect implant-bone micromotion and bone strains.
        Med Eng Phys. 2017; 42: 80-90
        • Wang Y.
        • Wong D.W.
        • Tan Q.
        • et al.
        Total ankle arthroplasty and ankle arthrodesis affect the biomechanics of the inner foot differently.
        Sci Rep. 2019; 9: 13334
        • Jiang D.
        • Zhan S.
        • Wang Q.
        • et al.
        Biomechanical Comparison of Locking Plate and Cancellous Screw Techniques in Medial Malleolar Fractures: A Finite-element Analysis.
        J Foot Ankle Surg. 2019; 58: 1138-1144
        • Alonso-Rasgado T.
        • Jimenez-Cruz D.
        • Karski M.
        3-D computer modelling of malunited posterior malleolar fractures: effect of fragment size and offset on ankle stability, contact pressure and pattern.
        J Foot Ankle Res. 2017; 10: 13
        • Li W.
        • Anderson D.D.
        • Goldsworthy J.K.
        • et al.
        Patient-specific finite-element analysis of chronic contact stress exposure after intraarticular fracture of the tibial plafond.
        J Orthop Res. 2008; 26: 1039-1045
        • Guan M.
        • Zhao J.
        • Kuang Y.
        • et al.
        Finite-element analysis of the effect of sagittal angle on ankle joint stability in posterior malleolus fracture: A cohort study.
        Int J Surg. 2019; 70: 53-59
        • Xie W.
        • Lu H.
        • Yuan Y.
        • et al.
        A new finite-element model of intra-articular impacted fragment in posterior malleolar fractures: A technical note.
        Injury. 2022; 53: 784-788
        • Anwar A.
        • Hu Z.
        • Adnan A.
        • et al.
        Comprehensive biomechanical analysis of three clinically used fixation constructs for posterior malleolar fractures using cadaveric and finite-element analysis.
        Sci Rep. 2020; 10: 18639
        • Anwar A.
        • Lv D.
        • Zhao Z.
        • et al.
        Finite-element analysis of the three different posterior malleolus fixation strategies in relation to different fracture sizes.
        Injury. 2017; 48: 825-832
        • Liu Q.
        • Zhang K.
        • Zhuang Y.
        • et al.
        Analysis of the stress and displacement distribution of inferior tibiofibular syndesmosis injuries repaired with screw fixation: a finite-element study.
        PLoS One. 2013; 8: e80236
        • Goh T.S.
        • Lim B.Y.
        • Lee J.S.
        • et al.
        Identification of Surgical Plan for Syndesmotic Fixation Procedure Based on Finite-element Method.
        Appl Sci. 2020; 10: 4349
        • Li H.
        • Chen Y.
        • Qiang M.
        • et al.
        Computational biomechanical analysis of postoperative inferior tibiofibular syndesmosis: a modified modeling method.
        Comput Methods Biomech Biomed Engin. 2018; 21: 427-435
        • Er M.S.
        • Verim O.
        • Altinel L.
        • et al.
        Three-dimensional finite-element analysis used to compare six different methods of syndesmosis fixation with 3.5- or 4.5-mm titanium screws: a biomechanical study.
        J Am Podiatr Med Assoc. 2013; 103: 174-180
        • Hsu Y.C.
        • Gung Y.W.
        • Shih S.L.
        • et al.
        Using an optimization approach to design an insole for lowering plantar fascia stress--a finite-element study.
        Ann Biomed Eng. 2008; 36: 1345-1352
        • Wang M.
        • Li S.
        • Teo E.C.
        • et al.
        The Influence of Heel Height on Strain Variation of Plantar Fascia During High Heel Shoes Walking-Combined Musculoskeletal Modeling and Finite-element Analysis.
        Front Bioeng Biotechnol. 2021; 9: 791238
        • Cheung J.T.
        • Zhang M.
        • An K.N.
        Effect of Achilles tendon loading on plantar fascia tension in the standing foot.
        Clin Biomech. 2006; 21: 194-203
        • Cheung J.T.
        • An K.N.
        • Zhang M.
        Consequences of partial and total plantar fascia release: a finite-element study.
        Foot Ankle Int. 2006; 27: 125-132
        • Chen T.L.
        • Wong D.W.
        • Peng Y.
        • et al.
        Prediction on the plantar fascia strain offload upon Fascia taping and Low-Dye taping during running.
        J Orthop Translat. 2020; 20: 113-121
        • Andersen H.
        • Poulsen P.L.
        • Mogensen C.E.
        • et al.
        Isokinetic muscle strength in long-term IDDM patients in relation to diabetic complications.
        Diabetes. 1996; 45: 440-445
        • Gefen A.
        • Megido-Ravid M.
        • Azariah M.
        • et al.
        Integration of plantar soft tissue stiffness measurements in routine MRI of the diabetic foot.
        Clin Biomech. 2001; 16: 921-925
        • Cheung J.T.
        • Zhang M.
        • Leung A.K.
        • et al.
        Three-dimensional finite-element analysis of the foot during standing--a material sensitivity study.
        J Biomech. 2005; 38: 1045-1054
        • Niu J.
        Arearch-conforming insoles agoodfit for diabetic foot? Insole customized design by using finite-element analysis.
        Hum Factors Man. 2020; 30: 3030-3310
        • Chen W.M.
        • Lee T.
        • Lee P.V.
        • et al.
        Effects of internal stress concentrations in plantar soft-tissue--A preliminary three-dimensional finite-element analysis.
        Med Eng Phys. 2010; 32: 324-331
        • Scarton A.
        • Guiotto A.
        • Malaquias T.
        • et al.
        A methodological framework for detecting ulcers' risk in diabetic foot subjects by combining gait analysis, a new musculoskeletal foot model and a foot finite-element model.
        Gait Posture. 2018; 60: 279-285
        • Chen W.P.
        • Ju C.W.
        • Tang F.T.
        Effects of total contact insoles on the plantar stress redistribution: a finite-element analysis.
        Clin Biomech. 2003; 18: S17-S24
        • Cheung J.T.
        • Zhang M.
        Parametric design of pressure-relieving foot orthosis using statistics-based finite-element method.
        Med Eng Phys. 2008; 30: 269-277
        • Shaulian H.
        • Gefen A.
        • Solomonow-Avnon D.
        • et al.
        Finite-element-based method for determining an optimal offloading design for treating and preventing heel ulcers.
        Comput Biol Med. 2021; 131: 104261
        • Actis R.L.
        • Ventura L.B.
        • Lott D.J.
        • et al.
        Multi-plug insole design to reduce peak plantar pressure on the diabetic foot during walking.
        Med Biol Eng Comput. 2008; 46: 363-371
        • Malakoutikhah H.
        • Madenci E.
        • Latt L.D.
        Evaluation of assumptions in foot and ankle biomechanical models.
        Clin Biomech. 2022; 100: 105807