Advertisement
Review Article| Volume 28, ISSUE 1, P63-76, March 2023

Download started.

Ok

Biomechanical Insights Afforded by Shape Modeling in the Foot and Ankle

Published:January 02, 2023DOI:https://doi.org/10.1016/j.fcl.2022.11.001

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Foot and Ankle Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Lintz F.
        • de Cesar Netto C.
        • Barg A.
        • et al.
        Weight-bearing cone beam CT scans in the foot and ankle.
        EFORT Open Rev. 2018; 3: 278-286
        • Krahenbuhl N.
        • Lenz A.L.
        • Lisonbee R.
        • et al.
        Imaging of the subtalar joint: a novel approach to an old problem.
        J Orthop Res. 2019; https://doi.org/10.1002/jor.24220
        • Hayes A.
        • Tochigi Y.
        • Saltzman C.L.
        Ankle morphometry on 3D-CT images.
        Iowa Orthopaedic J. 2006; 26: 1-4
        • Barg A.
        • Bailey T.
        • Richter M.
        • et al.
        Weightbearing computed tomography of the foot and ankle: emerging technology topical review.
        Foot Ankle Int. 2018; 39: 376-386
        • Krähenbühl N.
        • Horn-Lang T.
        • Hintermann B.
        • et al.
        The subtalar joint.
        EFORT Open Rev. 2017; 2: 309-316
        • Krahenbuhl N.
        • Siegler L.
        • Deforth M.
        • et al.
        Subtalar joint alignment in ankle osteoarthritis.
        Foot Ankle Surg. 2017; https://doi.org/10.1016/j.fas.2017.10.004
        • Krahenbuhl N.
        • Tschuck M.
        • Bolliger L.
        • et al.
        Orientation of the Subtalar Joint: Measurement and Reliability Using Weightbearing CT Scans.
        Foot Ankle Int. 2016; 37: 109-114
        • Cody E.A.
        • Williamson E.R.
        • Burket J.C.
        • et al.
        Correlation of talar anatomy and subtalar joint alignment on weightbearing computed tomography with radiographic flatfoot parameters.
        Foot Ankle Int. 2016; https://doi.org/10.1177/1071100716646629
        • Probasco W.
        • Haleem A.M.
        • Yu J.
        • et al.
        Assessment of coronal plane subtalar joint alignment in peritalar subluxation via weight-bearing multiplanar imaging.
        Foot Ankle Int. 2014; https://doi.org/10.1177/1071100714557861
        • Colin F.
        • Horn Lang T.
        • Zwicky L.
        • et al.
        Subtalar joint configuration on weightbearing CT scan.
        Foot Ankle Int. 2014; 35: 1057-1062
        • Apostle K.L.
        • Coleman N.W.
        • Sangeorzan B.J.
        Subtalar joint axis in patients with symptomatic peritalar subluxation compared to normal controls.
        Foot Ankle Int. 2014; 35: 1153-1158
        • Day J.
        • De Cesar Netto C.
        • Richter M.
        • et al.
        Evaluation of a weightbearing CT artificial intelligence-based automatic measurement for the M1-M2 intermetatarsal angle in hallux valgus.
        Foot Ankle Int. 2021; 42: 1502-1509
        • Kvarda P.
        • Heisler L.
        • Krähenbühl N.
        • et al.
        3D Assessment in Posttraumatic Ankle Osteoarthritis.
        Foot Ankle Int. 2021; 42: 200-214
        • Krähenbühl N.
        • Kvarda P.
        • Susdorf R.
        • et al.
        Assessment of progressive collapsing foot deformity using semiautomated 3D measurements derived from weightbearing CT scans.
        Foot Ankle Int. 2021; (107110072110497)https://doi.org/10.1177/10711007211049754
        • Krähenbühl N.
        • Lenz A.L.
        • Lisonbee R.J.
        • et al.
        Morphologic analysis of the subtalar joint using statistical shape modeling.
        J Orthopaedic Res. 2020; 38: 2625-2633
        • Lenz A.L.
        • Krähenbühl N.
        • Peterson A.C.
        • et al.
        Statistical shape modeling of the talocrural joint using a hybrid multi-articulation joint approach.
        Scientific Rep. 2021; 11https://doi.org/10.1038/s41598-021-86567-7
        • Agricola R.
        • Leyland K.M.
        • Bierma-Zeinstra S.M.
        • et al.
        Validation of statistical shape modelling to predict hip osteoarthritis in females: data from two prospective cohort studies (Cohort Hip and Cohort Knee and Chingford).
        Rheumatology (Oxford, England). 2015; 54: 2033-2041
        • Atkins P.R.
        • Elhabian S.Y.
        • Agrawal P.
        • et al.
        Quantitative comparison of cortical bone thickness using correspondence-based shape modeling in patients with cam femoroacetabular impingement.
        J Orthop Res. 2016; https://doi.org/10.1002/jor.23468
        • Harris M.D.
        • Datar M.
        • Whitaker R.T.
        • et al.
        Statistical shape modeling of cam femoroacetabular impingement.
        J Orthop Res. 2013; 31: 1620-1626
        • Ma J.
        • Wang A.
        • Lin F.
        • et al.
        A novel robust kernel principal component analysis for nonlinear statistical shape modeling from erroneous data.
        Comput Med Imaging Graphics. 2019; 77: 101638
        • Nelson A.E.
        • Golightly Y.M.
        • Lateef S.
        • et al.
        Cross-sectional associations between variations in ankle shape by statistical shape modeling, injury history, and race: the Johnston County Osteoarthritis Project.
        J Foot Ankle Res. 2017; 10: 34
        • Melinska A.U.
        • Romaszkiewicz P.
        • Wagel J.
        • et al.
        Statistical shape models of cuboid, navicular and talus bones.
        J Foot Ankle Res. 2017; 10: 6
        • Melinska A.U.
        • Romaszkiewicz P.
        • Wagel J.
        • et al.
        Statistical, morphometric, anatomical shape model (atlas) of calcaneus.
        PLoS One. 2015; 10: e0134603
        • Ambellan F.
        • Lamecker H.
        • von Tycowicz C.
        • et al.
        Statistical shape models: understanding and mastering variation in anatomy.
        Adv Exp Med Biol. 2019; 1156: 67-84
        • Cates J.
        • Fletcher P.T.
        • Styner M.
        • et al.
        Shape modeling and analysis with entropy-based particle systems.
        Inf Process Med Imaging. 2007; 20: 333-345
        • Van De Giessen M.
        • Vos F.M.
        • Grimbergen C.A.
        • et al.
        An efficient and robust algorithm for parallel groupwise registration of bone surfaces.
        Springer Berlin Heidelberg, Berlin, Germany2012: 164-171
        • Myronenko A.
        • Xubo S.
        Point set registration: coherent point drift.
        IEEE Trans Pattern Anal Machine Intelligence. 2010; 32: 2262-2275
        • Qiang M.
        • Chen Y.
        • Zhang K.
        • et al.
        Measurement of three-dimensional morphological characteristics of the calcaneus using CT image post-processing.
        J Foot Ankle Res. 2014; 7: 19
        • Tasnim N.
        • Schmitt D.
        • Zeininger A.
        Effects of human variation on foot and ankle pain in rural Madagascar.
        Am J Phys Anthropol. 2021; 176: 308-320
        • Zhao X.
        • Tsujimoto T.
        • Kim B.
        • et al.
        Characteristics of foot morphology and their relationship to gender, age, body mass index and bilateral asymmetry in Japanese adults.
        J Back Musculoskelet Rehabil. 2017; 30: 527-535
        • Barisch-Fritz B.
        • Schmeltzpfenning T.
        • Plank C.
        • et al.
        Foot deformation during walking: differences between static and dynamic 3D foot morphology in developing feet.
        Ergonomics. 2014; 57: 921-933
        • Yurt Y.
        • Sener G.
        • Yakut Y.
        Footwear suitability in Turkish preschool-aged children.
        Prosthetics and Orthotics International. 2014; 38: 224-231
        • Grant T.M.
        • Diamond L.E.
        • Pizzolato C.
        • et al.
        Development and validation of statistical shape models of the primary functional bone segments of the foot.
        Peer J. 2020; 8: e8397https://doi.org/10.7717/peerj.8397
        • Gabrielli A.S.
        • Gale T.
        • Hogan M.
        • et al.
        Bilateral Symmetry, Sex Differences, and Primary Shape Factors in Ankle and Hindfoot Bone Morphology.
        Foot & Ankle Orthopaedics. 2020; 5 (247301142090879)https://doi.org/10.1177/2473011420908796
        • Feng Y.
        • Bishop A.
        • Farley D.
        • et al.
        Statistical shape modelling to analyse the talus in paediatric clubfoot.
        Proc Inst Mech Eng H: J Eng Med. 2021; 235: 849-860
        • Peiffer M.
        • Burssens A.
        • De Mits S.
        • et al.
        Statistical shape model-based tibiofibular assessment of syndesmotic ankle lesions using weight-bearing CT.
        J Orthopaedic Res. 2022; https://doi.org/10.1002/jor.25318
        • Bruce O.L.
        • Baggaley M.
        • Welte L.
        • et al.
        A statistical shape model of the tibia-fibula complex: sexual dimorphism and effects of age on reconstruction accuracy from anatomical landmarks.
        Computer Methods Biomech Biomed Eng. 2022; 25: 875-886
        • Styner M.
        • Oguz I.
        • Xu S.
        • et al.
        Framework for the statistical shape analysis of brain structures using SPHARM-PDM.
        Insight J. 2006; 1071: 242-250
        • Lüthi M.
        • Jud C.
        • Vetter T.
        A unified approach to shape model fitting and non-rigid registration.
        Springer International Publishing, Cham, Switzerland2013: 66-73
        • Arbabi S.
        • Seevinck P.
        • Weinans H.
        • et al.
        Statistical shape model of the talus bone morphology: A comparison between impinged and nonimpinged ankles.
        J Orthopaedic Res. 2022; https://doi.org/10.1002/jor.25328
        • Schmutz B.
        • Lüthi M.
        • Schmutz-Leong Y.K.
        • et al.
        Morphological analysis of Gissane’s angle utilising a statistical shape model of the calcaneus.
        Arch Orthopaedic Trauma Surg. 2021; 141: 937-945
        • Tümer N.
        • Arbabi V.
        • Gielis W.P.
        • et al.
        Three-dimensional analysis of shape variations and symmetry of the fibula, tibia, calcaneus and talus.
        J Anat. 2019; 234: 132-144
        • Tümer N.
        • Vuurberg G.
        • Blankevoort L.
        • et al.
        Typical shape differences in the subtalar joint bones between subjects with chronic ankle instability and controls.
        J Orthopaedic Res. 2019; 37: 1892-1902
        • Liu T.
        • Jomha N.M.
        • Adeeb S.
        • et al.
        Investigation of the Average Shape and Principal Variations of the Human Talus Bone Using Statistic Shape Model. Original Research.
        Front Bioeng Biotechnol. 2020; 8https://doi.org/10.3389/fbioe.2020.00656
        • Peterson A.C.
        • Lisonbee R.J.
        • Krähenbühl N.
        • et al.
        Multi-Level Multi-Domain Statistical Shape Model of the Subtalar, Talonavicular, and Calcaneocuboid Joints.
        Front Bioeng Biotechnol. 2022; 10: 1-17
        • Welshman Z.M.S.
        A novel analytical pipeline quantifying variance in foot morphology and function using statistical shape modelling and a 26-segment foot model.
        University of Leeds, UK2021
        • Cootes T.F.
        • Taylor C.J.
        • Cooper D.H.
        • et al.
        Training models of shape from sets of examples.
        Springer, London, UK1992: 9-18
        • Horn J.L.
        A rationale and test for the number of factors in factor analysis.
        Psychometrika. 1965; 30: 179-185
        • Wang J.
        • Shi C.
        Automatic construction of statistical shape models using deformable simplex meshes with vector field convolution energy.
        Biomed Eng Online. 2017; 16: 49
        • Davies R.H.
        Learning shape: optimal models for analysing natural variability.
        The University of Manchester, Manchester, UK2002
      1. Styner MA, Rajamani KT, Nolte LP, et al. Evaluation of 3D correspondence methods for model building. Information processing in medical imaging : Proceedings of the Conference. Jul 2003;18:63-75. doi:

        • Ortolani M.
        • Leardini A.
        • Pavani C.
        • et al.
        Angular and linear measurements of adult flexible flatfoot via weight-bearing CT scans and 3D bone reconstruction tools.
        Scientific Rep. 2021; 11: 16139
        • Cates J.
        • Fletcher P.T.
        • Styner M.
        • et al.
        Particle-based shape analysis of multi-object complexes.
        Med Image Comput Comput Assist Interv. 2008; 11: 477-485
        • Lansdown D.A.
        • Pedoia V.
        • Zaid M.
        • et al.
        Variations in knee kinematics After ACL injury and after reconstruction are correlated with bone shape differences.
        Clin Orthop Relat Res. 2017; 475: 2427-2435
        • Audenaert E.A.
        • Pattyn C.
        • Steenackers G.
        • et al.
        Statistical shape modeling of skeletal anatomy for sex discrimination: their training size, sexual dimorphism, and asymmetry. original research.
        Front Bioeng Biotechnol. 2019; 7https://doi.org/10.3389/fbioe.2019.00302
        • Iskander D.R.
        Modeling videokeratoscopic height data with spherical harmonics.
        Optom Vis Sci. 2009; 86: 542-547
        • Vafaeian B.
        • Riahi H.T.
        • Amoushahi H.
        • et al.
        A feature-based statistical shape model for geometric analysis of the human talus and development of universal talar prostheses.
        J Anat. 2022; 240: 305-322