Advertisement
Review Article| Volume 28, ISSUE 1, P45-62, March 2023

Download started.

Ok

Role of Robotic Gait Simulators in Elucidating Foot and Ankle Pathomechanics

  • William R. Ledoux
    Correspondence
    Corresponding author. Center for Limb Loss and MoBility (CLiMB), VA Puget Sound Health Care System, ms 151, 1660 South Columbian Way, Seattle, WA 98108.
    Affiliations
    Center for Limb Loss and MoBility (CLiMB), VA Puget Sound Health Care System, ms 151, 1660 South Columbian Way, Seattle, WA 98108, USA

    Department of Mechanical Engineering, University of Washington, Seattle, WA, USA

    Department of Orthopaedics & Sports Medicine, University of Washington, Seattle, WA, USA
    Search for articles by this author
Published:January 02, 2023DOI:https://doi.org/10.1016/j.fcl.2022.11.005

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Foot and Ankle Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Manter J.T.
        Movements of the subtalar and transverse tarsal joints.
        Anatomical Rec. 1941; 80: 397-410
        • Hicks J.H.
        The mechanics of the foot I.
        Joints. 1953; 78: 345-357
        • Hicks J.H.
        The mechanics of the foot II. The plantar aponeurosis and the arch.
        J Anat. 1954; 88: 25-31
        • Isman R.E.
        • Inman V.T.
        Anthropometric studies of the human foot and ankle.
        Biomechanics Laboratory, University of California, San Francisco and Berkeley, San Francisco1968 (Technical Report 58)
        • Procter P.
        • Paul J.P.
        Ankle joint biomechanics.
        J Biomech. 1982; 15: 627-634
        • Kitaoka H.B.
        • Luo Z.P.
        • An K.N.
        Three-dimensional analysis of flatfoot deformity: cadaver study.
        Foot Ankle Int. 1998; 19: 447-451
        • Kitaoka H.B.
        • Luo Z.P.
        • An K.N.
        Reconstruction operations for acquired flatfoot: biomechanical evaluation.
        Foot Ankle Int. 1998; 19: 203-207
        • Niki H.
        • Ching R.P.
        • Kiser P.
        • et al.
        The effect of posterior tibial tendon dysfunction on hindfoot kinematics.
        Foot Ankle Int. 2001; 22: 292-300
        • Imhauser C.W.
        • Abidi N.A.
        • Frankel D.Z.
        • et al.
        Biomechanical evaluation of the efficacy of external stabilizers in the conservative treatment of acquired flatfoot deformity.
        Foot Ankle Int. 2002; 23: 727-737
        • Imhauser C.W.
        • Siegler S.
        • Abidi N.A.
        • et al.
        The effect of posterior tibialis tendon dysfunction on the plantar pressure characteristics and the kinematics of the arch and the hindfoot.
        Clin Biomech (Bristol, Avon). 2004; 19: 161-169
        • Blackman A.J.
        • Blevins J.J.
        • Sangeorzan B.J.
        • et al.
        Cadaveric flatfoot model: Ligament attenuation and Achilles tendon overpull.
        J Orthop Res. 2009; 27: 1547-1554
        • Deland J.T.
        • de Asla R.J.
        • Sung I.H.
        • et al.
        Posterior tibial tendon insufficiency: which ligaments are involved?.
        Foot Ankle Int. 2005; 26: 427-435
        • Aubin P.M.
        • Ledoux W.R.
        Cadaveric gait simulation.
        in: Ledoux W.R. Telfer S. Foot and ankle biomechanics. Elsevier, Limited, London2022: 351-363
        • Ferris L.
        • Sharkey N.A.
        • Smith T.S.
        • et al.
        Influence of extrinsic plantar flexors on forefoot loading during heel rise.
        Foot Ankle Int. 1995; 16: 464-473
        • Sharkey N.A.
        • Ferris L.
        • Smith T.S.
        • et al.
        Strain and loading of the second metatarsal during heel-lift.
        J Bone Joint Surg - Am Volume. 1995; 77: 1050-1057
        • Sharkey N.A.
        • Ferris L.
        • Donahue S.W.
        Biomechanical consequences of plantar fascial release or rupture during gait. Part I: Disruptions in longitudinal arch conformation.
        Foot Ankle Int. 1998; 19: 812-820
        • Sharkey N.A.
        • Hamel A.J.
        A dynamic cadaver model of the stance phase of gait: performance characteristics and kinetic validation.
        Clin Biomech (Bristol, Avon). 1998; 13: 420-433
        • Donahue S.W.
        • Sharkey N.A.
        Strains in the metatarsals during the stance phase of gait: Implications for stress fractures.
        J Bone Joint Surg Am. 1999; 81A: 1236-1244
        • Sharkey N.A.
        • Donahue S.W.
        • Ferris L.
        Biomechanical consequences of plantar fascial release or rupture during gait. Part II: Alterations in forefoot loading.
        Foot Ankle Int. 1999; 20: 86-96
        • Donahue S.W.
        • Sharkey N.A.
        • Modanlou K.A.
        • et al.
        Bone strain and microcracks at stress fracture sites in human metatarsals.
        Bone. 2000; 27: 827-833
        • Hamel A.J.
        • Donahue S.W.
        • Sharkey N.A.
        Contributions of active and passive toe flexion to forefoot loading.
        Clin Orthop Relat Res. 2001; 393: 326-334
        • Piazza S.J.
        • Adamson R.L.
        • Sanders J.O.
        • et al.
        Changes in muscle moment arms following split tendon transfer of tibialis anterior and tibialis posterior.
        Gait Posture. 2001; 14: 271-278
        • Michelson J.D.
        • Hamel A.J.
        • Buczek F.L.
        • et al.
        Kinematic behavior of the ankle following malleolar fracture repair in a high-fidelity cadaver model.
        J Bone Joint Surg Am. 2002; 84-A: 2029-2038
        • Erdemir A.
        • Hamel A.J.
        • Piazza S.J.
        • et al.
        Fiberoptic measurement of tendon forces is influenced by skin movement artifact.
        J Biomech. 2003; 36: 449-455
        • Piazza S.J.
        • Adamson R.L.
        • Moran M.F.
        • et al.
        Effects of tensioning errors in split transfers of tibialis anterior and posterior tendons.
        J Bone Joint Surg Am. 2003; 85: 858-865
        • Erdemir A.
        • Hamel A.J.
        • Fauth A.R.
        • et al.
        Dynamic loading of the plantar aponeurosis in walking.
        J Bone Joint Surg Am. 2004; 86: 546-552
        • Hamel A.J.
        • Sharkey N.A.
        • Buczek F.L.
        • et al.
        Relative motions of the tibia, talus, and calcaneus during the stance phase of gait: a cadaver study.
        Gait Posture. 2004; 20: 147-153
        • Michelson J.
        • Hamel A.
        • Buczek F.
        • et al.
        The effect of ankle injury on subtalar motion.
        Foot Ankle Int. 2004; 25 (SAGE Publications Inc): 639-646
        • Milgrom C.
        • Finestone A.
        • Hamel A.
        • et al.
        A comparison of bone strain measurements at anatomically relevant sites using surface gauges versus strain gauged bone staples.
        J Biomech. 2004; 37: 947-952
        • Kirane Y.M.
        • Michelson J.D.
        • Sharkey N.A.
        Evidence of isometric function of the flexor hallucis longus muscle in normal gait.
        J Biomech. 2008; 41: 1919-1928
        • Kirane Y.M.
        • Michelson J.D.
        • Sharkey N.A.
        Contribution of the flexor hallucis longus to loading of the first metatarsal and first metatarsophalangeal joint.
        Foot Ankle Int. 2008; 29: 367-377
        • Okita N.
        • Meyers S.A.
        • Challis J.H.
        • et al.
        An objective evaluation of a segmented foot model.
        Gait Posture. 2009; 30: 27-34
        • Hofmann C.L.
        • Okita N.
        • Sharkey N.A.
        Experimental evidence supporting isometric functioning of the extrinsic toe flexors during gait.
        Clin Biomech (Bristol, Avon). 2013; 28: 686-691
        • Okita N.
        • Meyers S.A.
        • Challis J.H.
        • et al.
        Midtarsal joint locking: new perspectives on an old paradigm.
        J Orthopaedic Res. 2013; 46: 2578-2585
        • Okita N.
        • Meyers S.A.
        • Challis J.H.
        • et al.
        Segmental motion of forefoot and hindfoot as a diagnostic tool.
        J Biomech. 2013; 46: 2578-2585
        • Kim K.J.
        • Kitaoka H.B.
        • Luo Z.P.
        • et al.
        In vitro simulation of the stance phase of gait.
        J Musculoskelet Res. 2001; 5: 113-121
        • Kim K.J.
        • Uchiyama E.
        • Kitaoka H.B.
        • et al.
        An in vitro study of individual ankle muscle actions on the center of pressure.
        Gait Posture. 2003; 17: 125-131
        • Watanabe K.
        • Kitaoka H.B.
        • Fujii T.
        • et al.
        Posterior tibial tendon dysfunction and flatfoot: analysis with simulated walking.
        Gait Posture. 2013; 37: 264-268
        • Hurschler C.
        • Emmerich J.
        • Wulker N.
        In vitro simulation of stance phase gait part I: Model verification.
        Foot Ankle Int. 2003; 24: 614-622
        • Wulker N.
        • Hurschler C.
        • Emmerich J.
        In vitro simulation of stance phase gait part II: Simulated anterior tibial tendon dysfunction and potential compensation.
        Foot Ankle Int. 2003; 24: 623-629
        • Suckel A
        • Muller O
        • Herberts T
        • Wulker N
        Changes in Chopart joint load following tibiotalar arthrodesis: In vitro analysis of 8 cadaver specimen in a dynamic model.
        BMC Musculoskeletal Disorders. 2007; 8: 80
        • Suckel A.
        • Muller O.
        • Langenstein P.
        • et al.
        Chopart’s joint load during gait In vitro study of 10 cadaver specimen in a dynamic model.
        Gait Posture. 2008; 27: 216-222
        • Suckel A
        • Muller O
        • Wachter N
        • Kluba T
        In vitro measurement of intraarticular pressure in the ankle joint. In. Knee Surgery.
        Sports Traumatology, Arthroscopy. 2010; 18: 664-668
        • Nester C.J.
        • Liu A.M.
        • Ward E.
        • et al.
        In vitro study of foot kinematics using a dynamic walking cadaver model.
        J Biomech. 2007; 40: 1927-1937
        • Nester C.J.
        Lessons from dynamic cadaver and invasive bone pin studies: do we know how the foot really moves during gait?.
        J Foot Ankle Res. 2009; 2: 18
        • Meardon S.A.
        • Edwards B.
        • Ward E.
        • et al.
        Effects of custom and semi-custom foot orthotics on second metatarsal bone strain during dynamic gait simulation.
        Foot Ankle Int. 2009; 30: 998-1004
        • Nester C.J.
        • Liu A.M.
        • Ward E.
        • et al.
        Error in the description of foot kinematics due to violation of rigid body assumptions.
        J Biomech. 2010; 43: 666-672
        • Lee D.G.
        • Davis B.L.
        Assessment of the effects of diabetes on midfoot joint pressures using a robotic gait simulator.
        Foot Ankle Int. 2009; 30: 767-772
        • Noble Jr., L.D.
        • Colbrunn R.W.
        • Lee D.G.
        • et al.
        Design and validation of a general purpose robotic testing system for musculoskeletal applications.
        J Biomech Eng. 2010; 132: 025001
        • Bayomy A.F.
        • Aubin P.M.
        • Sangeorzan B.J.
        • et al.
        Arthrodesis of the first metatarsophalangeal joint: a robotic cadaver study of the dorsiflexion angle.
        J Bone Joint Surg Am. 2010; 92: 1754-1764
        • Whittaker E.C.
        • Aubin P.M.
        • Ledoux W.R.
        Foot bone kinematics as measured in a cadaveric robotic gait simulator.
        Gait Posture. 2011; 33: 645-650
        • Jackson L.T.
        • Aubin P.M.
        • Cowley M.S.
        • et al.
        A robotic cadaveric flatfoot analysis of stance phase.
        J Biomech Eng. 2011; 133: 051005
        • Aubin P.M.
        • Whittaker E.C.
        • Ledoux W.R.
        A robotic cadaveric gait simulator with fuzzy logic vertical ground reaction force control.
        IEEE Trans Robotics. 2012; 28: 246-255
        • Weber J.R.
        • Aubin P.M.
        • Ledoux W.R.
        • et al.
        Second metatarsal length is positively correlated with increased pressure and medial deviation of the second toe in a robotic cadaveric simulation of gait.
        Foot Ankle Int. 2012; 33: 312-319
        • Vaudreuil N.J.
        • Ledoux W.R.
        • Roush G.C.
        • et al.
        Comparison of transfer sites for flexor digitorum longus in a cadaveric adult acquired flatfoot model.
        J Orthop Res. 2014; 32: 102-109
        • Trask D.J.
        • Ledoux W.R.
        • Whittaker E.C.
        • et al.
        Second metatarsal osteotomies for metatarsalgia: a robotic cadaveric study of the effect of osteotomy plane and metatarsal shortening on plantar pressure.
        J Orthop Res. 2014; 32: 385-393
        • Pihl C.M.
        • Stender C.J.
        • Balasubramanian R.
        • et al.
        Passive engineering mechanism enhancement of a flexor digitorum longus tendon transfer procedure.
        J Orthop Res. 2018; 36: 3033-3042
        • Buckner B.C.
        • Stender C.J.
        • Baron M.D.
        • et al.
        Does Coronal Plane Malalignment of the Tibial Insert in Total Ankle Arthroplasty Alter Distal Foot Bone Mechanics? A Cadaveric Gait Study.
        Clin Orthop Relat Res. 2020; 478: 1683-1695
        • Imsdahl S.I.
        • Stender C.J.
        • Cook B.K.
        • et al.
        Anteroposterior Translational Malalignment of Ankle Arthrodesis Alters Foot Biomechanics in Cadaveric Gait Simulation.
        J Orthop Res. 2020; 38: 450-458
        • Martin J.A.
        • Kindig M.W.
        • Stender C.J.
        • et al.
        Calibration of the shear wave speed-stress relationship in in situ Achilles tendons using cadaveric simulations of gait and isometric contraction.
        J Biomech. 2020; 106: 109799
        • McKearney D.A.
        • Stender C.J.
        • Cook B.K.
        • et al.
        Altered Range of Motion and Plantar Pressure in Anterior and Posterior Malaligned Total Ankle Arthroplasty: A Cadaveric Gait Study.
        J Bone Joint Surg Am. 2019; 101: e93
        • Burg J.
        • Peeters K.
        • Natsakis T.
        • et al.
        In vitro analysis of muscle activity illustrates mediolateral decoupling of hind and mid foot bone motion.
        Gait Posture. 2013; 38: 56-61
        • Peeters K.
        • Natsakis T.
        • Burg J.
        • et al.
        An in vitro approach to the evaluation of foot-ankle kinematics: performance evaluation of a custom-built gait simulator.
        Proc Inst Mech Eng H. 2013; 227: 955-967
        • Natsakis T.
        • Peeters K.
        • Burg F.
        • et al.
        Specimen-specific tibial kinematics model for in vitro gait simulations.
        Proc Inst Mech Eng H, J Eng Med. 2013; 227: 454-463
        • Natsakis T.
        • Burg J.
        • Dereymaeker G.
        • et al.
        Inertial control as novel technique for in vitro gait simulations.
        J Biomech. 2015; 48: 392-395
        • Natsakis T.
        • Burg J.
        • Dereymaeker G.
        • et al.
        Foot-ankle simulators: a tool to advance biomechanical understanding of a complex anatomical structure.
        Proc Inst Mech Eng H. 2016; 230: 440-449
        • Baxter J.R.
        • Sturnick D.R.
        • Demetracopoulos C.A.
        • et al.
        Cadaveric gait simulation reproduces foot and ankle kinematics from population-specific inputs.
        J Orthop Res. 2016; 34: 1663-1668
        • Sturnick D.R.
        • Demetracopoulos C.A.
        • Ellis S.J.
        • et al.
        Adjacent joint kinematics after ankle arthrodesis during cadaveric gait simulation.
        Foot Ankle Int. 2017; 38: 1249-1259
        • Saito G.H.
        • Sturnick D.R.
        • Ellis S.J.
        • et al.
        Influence of tibial component position on altered kinematics following total ankle arthroplasty during simulated gait.
        Foot Ankle Int. 2019; 40: 873-879
        • Quevedo Gonzalez F.J.
        • Steineman B.D.
        • Sturnick D.R.
        • et al.
        Biomechanical evaluation of total ankle arthroplasty. Part II: Influence of loading and fixation design on tibial bone-implant interaction.
        J Orthop Res. 2021; 39: 103-111
        • Steineman B.D.
        • Quevedo Gonzalez F.J.
        • Sturnick D.R.
        • et al.
        Biomechanical evaluation of total ankle arthroplasty. Part I: Joint loads during simulated level walking.
        J Orthop Res. 2021; 39: 94-102
        • Henry J.K.
        • Hoffman J.Kim J.
        • et al.
        The Foot and Ankle Kinematics of a Simulated Progressive Collapsing Foot Deformity During Stance Phase: A Cadaveric Study.
        Foot Ankle Int. 2022; 43: 1577-1586
        • Henry J.K.
        • Sturnick D.
        • Rosenbaum A.
        • et al.
        Cadaveric Gait Simulation of the Effect of Subtalar Arthrodesis on Total Ankle Replacement Kinematics.
        Foot Ankle Int. 2022; (10711007221088821)
        • Kim J.
        • Hoffman J.
        • Steineman B.
        • et al.
        Kinematic analysis of sequential partial-midfoot arthrodesis in simulated gait cadaver model.
        Foot Ankle Int. 2022; (10711007221125226)
        • Guo Q.
        • Shi G.
        • Wang D.
        • et al.
        Iterative learning based output feedback control for electro-hydraulic loading system of a gait simulator.
        Mechatronics. 2018; 54: 110-120
        • Wang D.
        • Wang W.
        • Guo Q.
        • et al.
        Design and validation of a foot-ankle dynamic simulator with a 6-degree-of-freedom parallel mechanism.
        Proc Inst Mech Eng H. 2020; 234: 1070-1082
        • Zhu G.
        • Wang Z.
        • Yuan C.
        • et al.
        In vitro study of foot bone kinematics via a custom-made cadaveric gait simulator.
        J Orthop Surg Res. 2020; 15: 346
        • Nester C.
        • Jones R.K.
        • Liu A.
        • et al.
        Foot kinematics during walking measured using bone and surface mounted markers.
        J Biomech. 2007; 40: 3412-3423
        • Aubin P.M.
        • Cowley M.S.
        • Ledoux W.R.
        Gait simulation via a 6-DOF parallel robot with iterative learning control.
        IEEE Trans Biomed Eng. 2008; 55: 1237-1240
        • Erdemir A.
        • Piazza S.J.
        • Sharkey N.A.
        Influence of loading rate and cable migration on fiberoptic measurement of tendon force.
        J Biomech. 2002; 35: 857-862
        • Behrmann G.P.
        • Hidler J.
        • Mirotznik M.S.
        Fiber optic micro sensor for the measurement of tendon forces.
        Biomed Eng Online. 2012; 11: 77
        • Okita N.
        • Meyers S.A.
        • Challis J.H.
        • et al.
        Midtarsal joint locking: new perspectives on an old paradigm.
        J Orthop Res. 2014; 32: 110-115
        • Ward E.D.
        • Phillips R.D.
        • Patterson P.E.
        • et al.
        1998 William J. Stickel Gold Award. The effects of extrinsic muscle forces on the forefoot-to-rearfoot loading relationship in vitro. Tibia and Achilles tendon.
        J Am Podiatr Med Assoc. 1998; 88: 471-482
        • McCullough M.B.
        • Ringleb S.I.
        • Arai K.
        • et al.
        Moment Arms of the Ankle Throughout the Range of Motion in Three Planes.
        Foot Ankle Int. 2011; 32: 300-306
        • Hansen M.L.
        • Otis J.C.
        • Kenneally S.M.
        • et al.
        A closed-loop cadaveric foot and ankle loading model.
        J Biomech. 2001; 34: 551-555
        • Ward E.D.
        • Smith K.M.
        • Cocheba J.R.
        • et al.
        2003 William J. Stickel Gold Award. In vivo forces in the plantar fascia during the stance phase of gait: sequential release of the plantar fascia.
        J Am Podiatr Med Assoc. 2003; 93: 429-442
        • Hirano T.
        • McCullough M.B.
        • Kitaoka H.B.
        • et al.
        Effects of foot orthoses on the work of friction of the posterior tibial tendon.
        Clin Biomech (Bristol, Avon). 2009; 24: 776-780